بررسی اثر کلرید کلسیم و سلنیوم بر مقاومت به دمای بالا در گندم (Triticum aestivum L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه شهید چمران اهواز

چکیده

جهت بررسی چگونگی اثر برخی ترکیبات شیمیایی ازجمله کلسیم و سلنیوم بر عملکرد و اجزای عملکرد گیاه گندم در ایجاد مقاومت در مقابل افزایش دمای محیط، آزمایشی در سال زراعی 97-1396 اجرا شد. این آزمایش به‌صورت اسپلیت فاکتوریل در قالب طرح پایه بلوک‌های کامل تصادفی با سه تکرار در مزرعه آزمایشی دانشکده کشاورزی دانشگاه شهید چمران اهواز اجرا شد. در این آزمایش سه عامل مورد بررسی قرارگرفت. عامل اول (کرت‌های اصلی): سه تاریخ کاشت شامل (20 آبان به‌عنوان تاریخ کاشت معمول، 20 آذر و 20 دی)، عامل دوم (کرت‌های فرعی): محلول‌پاشی ترکیبات شیمیایی مختلف شامل 1) آب شهری (شاهد)، 2) کلرید کلسیم (10 میلی‌مولار) 3) سلنیوم (4 میلی‌گرم در لیتر) و عامل سوم (کرت‌های فرعی): ارقام مختلف گندم شامل (چمران و استار) بود. با توجه به نتایج به‌دست آمده، در زمان استفاده از کلرید کلسیم برای محلول‌پاشی، در تاریخ کشت سوم تعداد دانه در سنبله نسبت به تاریخ کاشت 20 آبان فقط 12 درصد کاهش پیدا کرد در حالی‌که در تیمارهای شاهد و سلنیوم تعداد دانه در سنبله 36 درصد کاهش یافت. در تاریخ کاشت سوم، عملکرد دانه در تیمار شاهد 3/49 درصد و در تیمار سلنیوم 9/49 درصد نسبت به تاریخ کاشت اول کاهش نشان داد در حالی‌که در تیمار کلرید کلسیم کاهش عملکرد 8/23 درصد بود. در هر سه تاریخ کاشت، در زمانی‌که از کلرید کلسیم به‌عنوان محلول‌پاشی استفاده شد دوره پر شدن دانه نسبت به تیمارهای شاهد و سلنیوم طولانی‌تر بود. طولانی شدن دوره پر شدن دانه در زمان استفاده از کلرید کلسیم می‌تواند یکی از مهم‌ترین عواملی باشد که منجر به کاهش کمتر وزن هزار دانه و عملکرد دانه نسبت به بقیه تیمارها شده است. چون در این شرایط زمان کافی برای انجام فتوسنتز جاری و انتقال مجدد مواد به دانه‌های در حال پر شدن وجود دارد. در نهایت می‌توان نتیجه گرفت که محلول‌پاشی کلرید کلسیم می‌تواند از طریق کاهش اثرات منفی تنش گرما در زمان گرده‌افشانی، افزایش دوره پر شدن دانه و وزن هزاردانه نقش مهمی در کاهش اثرات تنش گرمای آخر فصل در گندم داشته باشد.

کلیدواژه‌ها


1. Abdoli, M., Saeidi, M., Jalali-Honarmand, S., Mansourifar, S., and Ghobadi, M. E. 2013. Investigation of some physiological and biochemical traits and their relationship with yield and its components in advanced bread wheat cultivars under post-pollinated water stress conditions. Journal of Environmental Stresses in Crop Sciences 6 (1): 63-47. (in Persian).
2. Al-Otayk, S.M. 2010. Performance of yield and stability of wheat genotypes under high stress environments of the central region of Saudi Arabia. Environmental and Arid Land Agriculture. Sciences 21: 81-92.
3. Asadinasab, N., Nabipour, M., Roshanfekr, H., and Rahnama Ghahfarokhi, A. 2019. Effect of Calcium Chloride Application Time on Reducing the Effects of Heat Exhaustion on Yield and Yield Components of Wheat in Ahvaz. Iranian Journal of Field Crops Research 16 (4): 833-846.
4. Brestic, M., Zivcak, M., Olsovska, K., Kalaji, H. M., Shao, H., and Hakeem, K. R. 2014. Heat signaling and stress responses in photosynthesis. Plant signaling: Understanding the molecular crosstalk. Springer India, New Delhi, 241-256.
5. Dhillon K. S. 2002. Selenium enrichment the soil plant system for a seleniferous region of northwest India. Journal of Hydrology 272: 120-130.
6. Dupont, F., and Altenbach, S. 2003. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. Journal of Cereal Science 38: 133-146.
7. Fageria, N. K. 2009. The use of nutrients in crop plants. Oxford University Press.
8. FAO. 2017. FAOSTA. http://www.fao.org/faostat/en/#home
9. Farooq, M., Bramley, H., Palta, J. A., and Siddique, K. H. M. 2011. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences 30: 1-17.
10. Gong, M., Vander Liut, A. H., Knight, M. R., and Trewavas, A. J. 1998. Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermos tolerance. Plant Physiology 116: 429-437.
11. Hairat, S., and Khurana, P. 2015. Improving photosynthetic responses during recovery from heat treatments with brassinosteroid and calcium chloride in Indian bread wheat cultivars. American Journal of Plant Sciences 6: 1827-1849.
12. Ma, R., Zhang, M., Li, B., Du, G., Wang, J., and Chen, J. 2005. The effects of exogenous Ca2+ on endogenous polyamine levels and drought-resistant traits of spring wheat grown under arid conditions. Journal of Arid Environments 39: 177-190.
13. Malik, J. A., Kumar, S., Thakur, P., Sharma, S., Kaur, N., Kaur, R., Pathania, D., Bhandhari, K., Kaushal, N., Singh, K., Srivastava, A., and Nayyar, H. 2011. Promotion of growth in mung bean (Phaseolus aureus Roxb.) by selenium is associated with stimulation of carbohydrate metabolism. Biological Trace Element Research 143: 530-539.
14. Marschner, H. 1995. Mineral nutrition of higher plants. Academic Press, London, UK.
15. McAinsh, M. R., Clayton, H., Mansfield, T. A., and Hertherington, A. M. 1996. Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiology 111: 1031-1042.
16. Modarresi, M., Mohammadi, V., Zali, A., and Mardi, M. 2010. Response of wheat yield and yield related traits to high temperature. Cereal Research 38: 23-31.
17. Mondal, S., Singh, R. P., Mason, E. R., Huerta-Espino, J., Autrique, E., and Joshi, A. K. 2016.Grain yield: adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia. Field Crops Research 192: 78-85.
18. Mosavi, S. H. 2014. Positive agricultural and food trade model with ad valorem tariffs. Journal Agriculture Science 16: 1481-1492.
19. Muhammad, I., Iqbal, H., Hena, L., Ashraf, M. A., Rizwan, R., and Rahman, R. 2015. Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiology and Biochemistry P: 32.
20. Nabipour, M., Atlasi Pak, V., Abdeshahian, M., Hasibi, P., and Saeedipour, S. 2011. Crop responses and adaptations to temperature stress (Translation). Shahid Chamran University of Ahvaz Publications. P: 380. (in Persian).
21. Nawaz, F., Ashraf, M. Y., Ahmad, R., Waraich, E. A., Shabbir, R. N., and Bukhari, M. A. 2015. Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chemistry 175: 350-357.
22. Nejata, F., Dadniya, M., Shirzadi, M. H., and Lak, S. 2009. Effects of drought stress and Selenium application on yield and yield components of two maize cultivars. Plant Ecophysiology 2: 95-102.
23. Pandey, G. C., Mamrutha, H. M., Tiwari, R., Sareen, S., Bhatia, S., Siwach, P., Tiwari, V., and Sharma, I. 2014. Physiological traits associated with heat tolerance bread wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants 21: 93-99.
24. Prasad P. V. V., Isipati, S. R., Momčilović, I., and Ristic, Z. 2011. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu Expression in spring wheat. Journal of Agronomy Crop Science 197: 430-441.
25. Rahman, M. A., Chikushi, J., Yoshida, S., and Karim, A. J. M. S. 2009. Growth and yield components of wheat genotypes exposed to high temperature stress under control environment. Bangladesh Journal Agriculture Research 34: 361-372.
26. Saidi, I., Chtourou, Y., and Djebali, W. 2014. Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. Journal Plant Physiology 171: 85-91.
27. Sasan, T., Hasanpour, J., and Tajali, A. A. 2013. Effect of Selenium spraying on yield and growth indices of Wheat (Triticum aestivum L.) under drought stress condition. International journal of Advanced Biological and Biomedical Research 2 (6): 2091-2103.
28. Shoresh, M., Spivak, M., and Bernstein, N. 2011. Involvement of calcium mediated effects on ROS metabolism in the regulation of growth improvement under salinity. Free Radical Biologic 51: 1221-1234.
29. Timothy, P. 2001. Effect of selected selenium status: Implications of oxidative stress. Biochemical Pharmacology 62: 273-281.
30. Trofimova, M. S., Andreev, I. M., and Kuznestsov, V. V. 1999. Calcium is involved in regulation of the synthesis of HSPs in suspension-cultured sugar beet cells under hyperthermia. Journal of Physiology Plant 105: 67-73.
31. Wahid, A., Gelani, S., Ashraf, M., and Foolad, M. R. 2007. Heat tolerance in plants: An overview. Environmental and Experimental Botany 61: 199-223.
32. Zadoks, J. C., Chang, T. T., and Konzak, C. F. 1974. A decimal code for the growth stages of cereals. Weed Research 14: 415-421.
33. Zhang, H., Xua, C., He, Y., Zong, J., Yang, X., Si, H., Sun, Z., Hud, J., Liang, W., and Zhang, D. 2012. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proceeding of the National Academy of Science of the United State of America 110: 76-81.