تأثیر محلول‌پاشی سیتوکنین و چین‌ برداشت بر تولید اسانس و خصوصیات رویشی آویشن (Thymus vulgaris L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تولید و ژنتیک گیاهی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

2 گروه بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

3 گروه تولیدات گیاهی و دامی، دانشگاه یوزگات، یوزگات، ترکیه

چکیده

آویشن (Thymus vulgaris L.) گیاهی چندساله از تیره Lamiaceae و بومی مدیترانه است. عملکرد گیاه آویشن تحت تأثیر عوامل محیطی و مدیریت کشاورزی قرار می‌گیرد. با هدف بررسی اثر محلول‌پاشی سیتوکینین (از نوع بنزیل آمینوپورین) در چین‌های برداشت بر عملکرد اسانس و رشد رویشی گیاه آویشن، آزمایشی به‌صورت فاکتوریل بر پایه طرح بلوک‌های کامل تصادفی با سه تکرار در مزرعه تحقیقاتی دانشگاه رازی در سه سال متوالی 1397، 1398 و 1399 اجرا شد. چین‎های برداشت (اواخر خرداد و اواخر شهریور) به‌عنوان فاکتور اول و غلظت‌های سیتوکینین (صفر، 100، 200 و 400 میکرومولار، از منبع بنزیل آمینوپورین) به‌عنوان فاکتور دوم بودند. نتایج تجزیه واریانس داده‌ها نشان داد که اثر چین روی صفات ارتفاع بوته، قطر ساقه، تعداد شاخه جانبی، وزن خشک‌های برگ، ساقه و کل و عملکرد اسانس معنی‌دار، ولی بر درصد اسانس معنی‌دار نبود. همچنین، محلول‌پاشی سیتوکینین روی تمام صفات قید‌شده معنی‌دار گردید. اثر متقابل چین × محلول‌پاشی روی صفات تعداد شاخه جانبی، وزن خشک برگ و ساقه، وزن خشک کل و عملکرد اسانس معنی‌دار بود. مقایسه میانگین‌ها نشان داد که بیشترین ارتفاع بوته، تعداد شاخه فرعی، وزن خشک برگ، وزن خشک ساقه و وزن خشک کل (4355 کیلوگرم در هکتار) با محلول‌پاشی 400 میکرومولار سیتوکینین به‌‌دست آمد. بیشترین درصد اسانس (2.35 درصد) و عملکرد اسانس (59.95 کیلوگرم در هکتار) به‌ترتیب با محلول‌پاشی 200 و 400 میکرومولار سیتوکینین در چین اول حاصل شد. به‌طور کلی، نتایج این مطالعه نشان داد که محلول‌پاشی سیتوکینین در چین اول برداشت تأثیر بیشتری داشت و ارتفاع بوته (16 درصد)، تعداد شاخه جانبی (59 درصد)، وزن خشک برگ (200 درصد)، وزن خشک کل (194 درصد) و عملکرد اسانس (108-217 درصد) را افزایش داد. همچنین، با افزایش سن گیاه (سال سوم) این افزایش عملکرد بیشتر بود.

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source

  1. Abbaszadeh, B., & Layegh Haghighi, M., (2013). Effect of nutrition and harvest time on growth and essential oil content of Thymus vulgarisJournal of Medicinal plants and By-Product, 2(2), 143-151. ‏(in Persian). https://doi.org/10.22092/jmpb.2013.108587
  2. Abdel Latef, A. A. H., Akter, A., & Tahjib-Ul-Arif, M. (2021). Foliar application of auxin or cytokinin can confer salinity stress tolerance in Vicia fabaAgronmy Journal, 11(4), 790.‏ https://doi.org/10.3390/agronomy11040790
  3. Akbarinia, A., Sharifi Ashoorabadi, E., & Mirza, M. A. H. D. I. (2010). Study on drug yield and essential oil content and composition of Thymus daenensis Under cultivated condition. Iranian Journal of Medicinal and Aromatic Plants Research, 26(2), 205-212. ‏(in Persian). https://doi.org/10.22092/ijmapr.2010.6863
  4. Amani Machiani, M., Javanmard, A., Ostadi, A., & Morshedloo, M. R. (2021). Evaluation of essential oil yield and ecological indices in the intercropping of thyme (Thymus vulgaris) and soybean (Glycine max L.) with application of arbuscular mycorrhizal fungus. Journal of Agricultural Science and Sustainable Production, 31(3), 31-50. (in Persian). https://doi.org/10.22034/saps.2021.13687
  5. Azizi, P., Rafii, M. , Maziah, M., Abdullah, S. N. A., Hanafi, M. M., Latif, M. A., Rashid, A. A., & Sahebi, M. (2015). Understanding the shoot apical meristem regulation: A study of the phytohormones, auxin and cytokinin, in rice. Mechanisms of Development, 135, 1-15. https://doi.org/10.1016/j.mod.2014.11.001
  6. Beata, K. R. O. L., & Kieltyka-Dadasiewicz, A. (2015). Yield and herb quality of thyme (Thymus vulgaris) depending on harvest time. Turkish Journal of Field Crops, 20(1), 78-84. https://doi.org/10.17557/.89347
  7. Bybordi, A. (2007). Effect of foliar applications of Iron and Zinc on the yield and quality of white qom and red ray onion varieties in grown Khosrowshahr regions. Pajouhesh and Sazandegi, 74, 153-160. (in Persian).
  8. Carey, D. J., Whipker, B. E., McCall, I., & Buhler, W. (2008). Cytokinin based PGR affects growth of vegetative petunia. In Proceedings of the 35th Annual Meeting of the Plant Growth Regulation Society of America, San Francisco, CA, USA, 3–7 August; Plant Growth Regulation Society of America: Atlanta, GA, USA.
  9. Dar, T. M., Uddin, M., Khan, M. A., Ali, A., Hashmi N., & Idrees, M. (2015). Cumulative effect of gibberellic acid and phosphorus on crop productivity, biochemical activities and trigonelline production in Trigonella foenumgraecum L. Cogent Food and Agriculture, 1, 1-14. https://doi.org/10.1080/23311932.2014.995950
  10. Doustipour, S., Barmaki, M., Hassanpanah, D., & Khomari, S. (2016). Study the effects of synthetic cytokinin on growth and yield of potato cultivares. M.Sc. Dissertation, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Iran. (In Persian).
  11. Farooqi, A. A., Khan, A., & Sharma, S. (2003). Effect of kinetin and chlormequat chloride on growth, leaf abscission and essential oil yield in Mentha arvensis. Indian Perfumer, 47(4), 359-363.
  12. Gershenzon, J. (1994). Metabolic costs of terpenoid accumulation in higher plants. Journal of Chemical Ecology, 20, 1281-1328.‏ https://doi.org/10.1007/BF02059810
  13. Grzesik, M. (1989). Factors influencing the effectiveness of growth regulators in nursery production. Acta Horticulturae251, 371–375.
  14. Halmann, M., Frei, A., & Steinfeld, A. (2002). Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons. Energy27(12), 1069-1084.‏ https://doi.org/10.1016/S0360-5442(02)00080-4
  15. Honig, M., Plihalova, L., Husickova, A., Nisler, J., & Doležal, K. (2018). Role of cytokinins in senescence, antioxidant defence and photosynthesis. International Journal of Molecular Sciences, 19, 4045. https://doi.org/10.3390/ijms19124045
  16. Hornok, L. (1992). Cultivation and Processing of Medicinal Plants. Academiai Kiado. Budapest, Hungary. 338 p.
  17. Khan, A. , Mujeeb, F., Aha, F., & Farooqui, A. (2015). Effect of plant growth regulators on growth and essential oil content in palmarosa (Cymbopogon martinii). Asian Journal Pharmaceutical Clinical Research, 8(2), 373-376.
  18. Khan, M. M. A., Afreen, R., Quasar, N., Khanam, N., & Uddin, M. (2023). Steam-mediated foliar application of catechol and plant growth regulators enhances the growth attributes, photosynthesis, and essential oil production of lemongrass [Cymbopogon flexuosus (Steud.) WATS]. Biocatalysis and Agricultural Biotechnology, 48, 102638.‏ https://doi.org/10.1016/j.bcab.2023.102638
  19. Khetsha, Z. P., Sedibe, M. M., Pretorius, R. J., & van der Watt, E. (2021). Cytokinin, gibberellic acid and defoliation on density and morphology of trichome of pelargonium graveolens l’hér for essential oil biosynthesis. Agrociencia55(4), 331-346.‏ https://doi.org/10.47163/agrociencia.v55i4.2481
  20. Mahdy, H. A. A., Mubarak, D. M., El-Azab, M. E., Mohammed, K. A. S., & Abd El-Rheem, K. M. (2019). Effect of foliar spraying with amino acid and cytokinin on growth, yield quality and quantity of nutritional status of roselle plants. Bioscience Research16(1), 102-109. https://doi.org/10.47163/agrociencia.v55i4.2481
  21. Meier, U. (2018). Growth stages of mono- and dicotyledonous plants. BBCH Monograph. Julius Kuhn-Institute (JKI). Quedlinburg, Germany. https://doi.org/10.5073/20180906-074619
  22. Muthulakshmi, S., & Pandiyarajan, V. (2015). Effect of Iaa on the Growth, Physiological and Biochemical Characteristics in Catharanthus roseus G. Don. International Journal of Science and Research, 4(3), 442-48.
  23. Naghdi Badi, H., Labbafi, M. R., Qavami, N., Qaderi, A., Abdossi, V., Agharebparast, M. R., & Mehrafarin, A. (2015). Responses of quality and quantity yield of garden thyme (Thymus vulgaris) to foliar application of bio-stimulator based on amino acids and methanol. Journal of Medicinal Plants, 14(54), 146-158. https://dorl.net/dor/20.1001.1.2717204.2015.14.54.12.5‏
  24. Noroozi Shahri, F., Jalali Honarmand, S., Saeidi, M., & Mondani, F. (2020). Evaluation of growth phytohormones and different concentrations of plant derived smoke applications on growth characteristics and biological yield of medicinal plants Lemon balm (Melissa officinalis) and Basil (Ocimum basilicam). Journal of Crops Improvement, 22(1), 89-102. https://doi.org/10.22059/jci.2019.280801.2211
  25. Omidbeigi (2000). Production and processing of medicinal plants. Volume I, Second Edition, Tarahan Publication, Iran. 424 pp. (in Persian).
  26. Opabode, J. T. & Owojori, S. (2018). Response of African eggplant (Solanum macrocarpon) to foliar application of 6-benzylaminopurine and gibberellic acid. Journal of Horticultural Research, 26(2), 37-45. https://doi.org/10.2478/johr-2018-0014
  27. Ozguven, M., & Tansi, S. (1998). Drug yield and essential oil of Thymus vulgaris as in influenced by ecological and ontogenetical variation. Turkish Journal of Agriculture and Forestry, 22, 537-542.
  28. Palai, S. K., Rout, G. R., & Das, P. (1997). Micropropagation of ginger (Zingiber officinale)-interaction of growth regulators and culture conditions. Biotechnology of spices, medicinal and aromatic plants. India: Indian Society for Spices, Kerala. 20-24. ‏
  29. Prakash, V. (1990). Leafy Spices. CRS Press. Boca Ra. U.S.A. 114 p.
  30. Rohamare, Y., Nikam, T. D., & Dhumal, K. N. (2013). Effect of foliar application of plant growth regulators on growth, yield and essential oil components of ajwain (Trachyspermum ammi). International Journal of Seed Spices, 3(2), 34-41.
  31. Safaii, L., Ashoorabadi, E. S., Emami, S. D., & Afiuni, D. (2014). The effect of harvesting stages on quantitative and qualitative characters of essential oil and phenolic yield composition in two thyme species (Thymus daenensis Celak and vulgaris L.) in Iran. International Journal of Agriculture and Crop Sciences, 7(13), 1346. ‏
  32. salek Mearaji, H., Tavakoli, A., & Niazsepahvand, A. A. (2020). The Effect of cytokinin on physiological and related traits with yield of quinoa under drought stress conditions. Journal of Crops Improvement, 22(3), 419-432. https://doi.org/22059/jci.2020.292821.2298
  33. Silva, A. S., Tewari, D., Sureda, A., Suntar, I., Belwal, T., Battino, M.,& Nabavi, S. F. (2021). The evidence of health benefits and food applications of Thymus vulgaris Trends in Food Science and Technology117, 218-227.‏ https://doi.org/10.1016/j.tifs.2021.11.010
  34. Sosnowski, J., Truba, M., & Vasileva, V. (2023). The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture, 13(3), 724.‏ https://doi.org/10.3390/agriculture13030724
  35. Sudria, C., Palazon, J., Cusido, R., Bonfill, M., Pinol, M. T., & Morales, C. (2004). Effect of benzyladenine and indolebutyric acid on ultrastructure, glands formation, and essential oil accumulation in Lavandula dentata Physiol Plant, 44(1), 1-6.
  36. Thakur, M., & Kumar, R. (2020). Foliar application of plant growth regulators modulates the productivity and chemical profile of damask rose (Rosa damascena) under mid hill conditions of the western Himalaya. Journal Industrial Crops and Products, 158, 113024. https://doi.org/10.1016/j.indcrop.2020.113024
  37. Ullah, A., Manghwar, H., Shaban, M., Khan, A. H., Akbar, A., Ali, U., Ali, E., & Fahad, S. (2018). Phytohormones enhanced drought tolerance in plants: A coping strategy. Environmental Science and Pollution Research, 25, 33103–33118. https://doi.org/1007/s11356-018-3364-5
  38. Valiyari, M., & Nourafcan, H. (2018). Effect of IAA and BAP on morphophysiological traits of lemon balm. Agroecology Journal, 13(4), 23-32. (In Persian).
  39. Wang, Y., Li, J., Yang, L., & Chan, Z. (2023). Melatonin antagonizes cytokinin responses to stimulate root growth in Arabidopsis. Journal of Plant Growth Regulation, 42(3), 1833-1845. https://doi.org/10.1007/s00344-022-10663-9
  40. Zahid, G., Iftikhar, S., Shimira, F., Ahmad, H. M., & Kaçar, Y. A. (2023). An overview and recent progress of plant growth regulators (PGRs) in the mitigation of abiotic stresses in fruits: A review. Scientia Horticulturae, 309, ‏ https://doi.org/10.1016/j.scienta.2022.111621
  41. Rademacher, W. (2015). Plant growth regulators: backgrounds and uses in plant production. Journal of Plant Growth Regulation34, 845-872. https://doi.org/10.1007/s00344-015-9541-6
  42. Affonso, V. R., Bizzo, H. R., Lage, C. L. S., & Sato, A. (2009). Influence of growth regulators in biomass production and volatile profile of in vitro plantlets of Thymus vulgarisJournal of Agricultural and Food Chemistry57(14), 6392-6395. https://doi.org/10.1021/jf900816c
  43. Bahman, S., Mehrafarin, A., & Naghdi Badi, H. (2017). Influence of gibberellic acid, indole butyric acid, and methanol on morpho-physiological and phytochemical traits in Thymus vulgaris Journal of Medicinal Plants, 16(61), 33-44. https://dorl.net/dor/20.1001.1.2717204.2017.16.61.8.9
CAPTCHA Image