ارزیابی اثر دوگونه‌ میکوریزا و کود زیستی نیتروکسین بر عملکرد و اجزای عملکرد سیر (Allium sativum L.) در یک نظام زراعی اکولوژیک

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

در سال‌های اخیر همواره استفاده از نهاده‌های بیولوژیک به‌عنوان یکی از راهکارهای اساسی در جهت توسعه پایدار محصولات زراعی و به‌ویژه گیاهان دارویی مطرح بوده‌اند. به‌منظور بررسی اثر گونه‌های مختلف میکوریزا و کود زیستی نیتروکسین بر عملکرد و اجزای عملکرد سیر آزمایشی در سال زراعی 89-1388 در مزرعۀ تحقیقاتی دانشکدۀ کشاورزی دانشگاه فردوسی مشهد، به‌صورت فاکتوریل در قالب طرح پایۀ بلوک‌های کامل تصادفی و با سه تکرار انجام شد. عوامل مورد بررسی شامل گونه‌های مختلف میکوریزا (Glomus mosseae، Glomus intraradices و شاهد بدون میکوریزا) و کود زیستی (کاربرد و عدم کاربرد نیتروکسین (دارای باکتری‌های Azotobacter sp. و Azospirillum sp.)) بودند. نتایج آزمایش نشان داد که تلقیح با دو گونه میکوریزا صفات مورد مطالعه را نسبت به شاهد افزایش دادند. وزن سوخ در بوته به‌طور معنی‌داری تحت‌تأثیر گونه‌های مختلف میکوریزا قرار گرفت، به‌طوری‌که گونه‌های Glomus mosseae و Glomus intraradices وزن سوخ در بوته را به‌ترتیب 48 و 29 درصد نسبت به شاهد افزایش دادند. تلقیح با نیتروکسین به‌طور معنی‌داری بر طول و قطر سوخک تأثیر داشت، به‌طوری‌که به‌ترتیب باعث افزایش 13 و 8 درصدی طول و قطر سوخک نسبت به شاهد شد. با توجه به نتایج آزمایش، تلقیح با Glomus mosseae در تلقیح و عدم‌تلقیح با نیتروکسین، در اکثر صفات مورد مطالعه نسبت به سایر تیمارها برتر بود. اثر متقابل تلقیح نیتروکسین و گونه‌های مختلف میکوریزا بر تمامی صفات مورد مطالعه معنی‌دار بود. نیتروکسین اثر تمامی گونه‌های میکوریزای مورد مطالعه را در مقایسه با شرایطی که این میکوریزاها به تنهایی به‌کار رفتند تشدید کرد. بیشترین (4306 کیلوگرم در هکتار) و کمترین (1665 کیلوگرم در هکتار) عملکرد اقتصادی به‌ترتیب در تیمارهای تلقیح Glomus mosseae توأم با تلقیح نیتروکسین و عدم میکوریزا + عدم تلقیح نیتروکسین به‌دست آمد. به‌طور کلی با توجه به یافته‌های این پژوهش، به نظر می‌رسد می‌توان با استفاده از نهاده‌های بیولوژیک ضمن کاهش مصرف کودهای شیمیایی و مخاطرات زیست‌محیطی ناشی از آنها، پایداری تولید را در درازمدت حفظ نمود.

کلیدواژه‌ها


1. Abdalla, F. H., Belle, L. P., De Bona, K. S., Bitencourt, P. E., Pigatto, A. S., and Moretto, M. B. 2009. Allium sativum L. extract prevents methyl mercury-induced cytotoxicity in peripheral blood leukocytes (LS). Food and Chemical Toxicology 48: 417-421.
2. Alarcon, A., Davies, F. T., Egilla, N. J., Fox, T. C., Estrada-Luna, A. A., and Ferrera-Cerrato, R. 2002. Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress. Review Latinoam Microbiology 44: 31-37.
3. Artursson, V., Finlay, R. D., and Jansson, J. K. 2005. Combined bromodeoxyuridine immunocapture and terminal restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environmental Microbiology 7: 1952-1966.
4. Artursson, V., Finlay, R. D., and Jansson, J. K. 2006. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology 8: 1-10.
5. Aslantas, R., Cakmakci, R., and Sahin, F. 2007. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Scientia Horticulturae 111: 371-377.
6. Bago, B., Pfeffer, P. E., and Shachar-Hill, Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology 124: 949-958.
7. Banerjee, S. K., and Maulik, S. K. 2002. Effect of garlic on cardiovascular disorders: A review. Nutrition Journal 1: 1-14.
8. Barea, J. M., Azcon, R., and Azcon-Aguilar, C. 2002. Mycorrhizosphere interaction to improve plant fitness and soil quality. Antonie van Leeuwenhoek 81: 343-351.
9. Benabdellah, K., Abbas, Y., Abourouh, M., Aroca, R., and Azcon, R. 2011. Influence of two bacterial isolates from degraded and non-degraded soils and arbuscular mycorrhizae fungi isolated from semi-arid zone on the growth of Trifolium repens under drought conditions: Mechanisms related to bacterial effectiveness. European Journal of Soil Biology 47: 303-309.
10. Cardoso, I. M., and Kuyper, T. W. 2006. Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems and Environment 116: 72-84.
11. Carpenter-Boggs, L., Loynachan, T. E., and Stahl, P. D. 1995. Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biology and Biochemistry 27: 1445-1451.
12. Darzi, M. T., Galavand, A., Rejali, F., and Kon, F. S. 2007. Effect of biofertilizers application on yield and yield components in fennel (Foeniculum vulgare). Iranian Journal of Medicinal and Aromatic Plants 22: 276-292.
13. Erman, M., Demir, S., Ocak, E., Tufenkci, S., Oguz, F., and Akkopru, A. 2011. Effects of Rhizobium, arbuscular mycorrhiza and whey applications on some properties in chickpea (Cicer arietinum L.) under irrigated and rainfed conditions 1-Yield, yield components, nodulation an AMF colonization. Field Crops Research 122: 14-24.
14. Fallahi, J. 2009. Effect of biofertilizers and chemical fertilizers on quantitative and qualitative characteristics of Matricaria chammomilla. MS thesis of Agroecology, Faculty of agriculture, Ferdowsi University of Mashhad. (in Persian with English abstract).
15. Founoune, H., Dponnois, R., Meyer, J. M., Thioulose, J., Mass, D., Chotte, J. L., and Neyra, M. 2002. Interactions between ectomycorrhizal symbiosis and fluorescent pseudomonads on Acacia holosericea: isolation of mycorrhiza helper bacteria (MHB) from a Soudano-Sahelian soil. FEMS Microbiology Ecology 41: 37-46.
16. Frey-Klett, P., Pierrat, J. C., and Garbaye, J. 1997. Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Applied and Environmental Microbiology 63: 139-144.
17. Galleguillos, C., Aguirre, C., Barea, J. M., and Azcon, R. 2000. Growth promoting effect of two Sinorhizobium Meliloti strains (a wild type and its genetically modified derwvative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Science 159: 57-63.
18. Gamalero, E., Trotta, A., Massa, N., Copetta, A., Martinotti, M. G., and Berta, G. 2004. Impact of two fluorescent pseudomonads and and arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14: 185-192.
19. Garbaye, J., and Bowen, G. D. 1987. Effect of different microflora on the success of ectomycorrhizal inoculation of Pinus radiate. Canadian Journal of Forest Research 17: 941- 943.
20. Gholami, A., Biari, A., and Nezarat, S. 2009. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. World Academy of Science, Engineering and Technology 49: 19-24.
21. Hawkes, C. V., Hartley, I. P., Ineson, P., and Fitter, A. H. 2008. Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biology 14: 1181-1190.
22. Huat, O. K., Awang, K., Hashim, A., and Majid, N. M. 2002. Effects of fertilizers and vesicular-arbuscular mycorrhizas on the growth and photosynthesis of Azodirachta excels (Jack) Jacobs seedlings. Forest Ecology and Management 158: 51-58.
23. Jahan, M., Amiri, M. B., Ehyaee, H. R. 2013. The effect of plant growth promoting rhizobacteria (PGPR) on quantitative and qualitative characteristics of Sesamum indicum L. with application of cover crops of Lathyrus sp. And Persian clover (Trifolium respinatum L.). Agroecology 5: 1-15. (in Persian with English abstract).
24. Jakobsen, I., and Rosendahl, L. 1990. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber roots. New Phytologist 115: 77-83.
25. Karagiannidis, N., Bletsos, F., and Stavropoulos, N. 2002. Effect of verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Scientia Horticulturae 94: 145-156.
26. Kohler, J., Caravaca, F., Carrasco, L., and Roldan, A. 2007. Interactions between a plant growth-promoting rhizobacterium, and AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Applied Soil Ecology 35: 480-487.
27. Larsen, J., Cornejo, P., and Barea, J. M. 2009. Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant growth promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus. Soil Biology and Biochemistry 41: 286-292.
28. Latef, A. A. H. A., and Chaoxing, H. 2010. Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiologiae Plantarum.
29. Lovelock, C. E., Wright, S. F., Clark, D. A., and Ruess, R. W. 2004. Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. Journal of Ecology 92: 278-287.
30. Marulanda, A., Barea J. M., and Azcon, R. 2009. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments. Mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation 28: 115-124.
31. Mena-Violante, H. G., and Olalde-Portugal, V. O. 2007. Alteraction of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Scientia Horticulturae 113: 103-106.
32. Olsson, P. A., Thingstrup, I., Jakobsen, I., and Baath, E. 1999. Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biology and Biochemistry 31: 1879-1887.
33. Paradis, R., Dalpe, Y., and Charest, C. 1995. The combined effect of arbuscular mycorrhizas and short-term cold exposure on wheat. New Phytologist 129: 637-642.
34. Pirlak, L., and Kose, M. 2009. Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. Journal of Plant Nutrition 32: 1173-1184.
35. Rezvani Moghaddam, P., Amiri, M. B., and Ehyaee, H. R. 2015. Effect of plant growth promoting rhizobacteria on yield and yield components of sesame (Sesamum indicum L.). Iranian Journal of Field Crops Research. In Press. (in Persian with English abstract).
36. Roesti, D., Gaur, R., Johri, B. N., Imfeld, G., Sharma, S., Kawaljeet, K., and Aragno, M. 2006. Plant growth stage, fertilizer management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biology and Biochemistry 38: 1111-1120.
37. Sawers, R. J. H., Gutjahr, C., and Paszkowski, U. 2008. Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends in Plant Science 13: 93-97.
38. Senula, A., and Keller, R. J. 2000. Morphological characterization of a garlic core collection and establishment of a virus-free in vitro genebank. Allium Improvement Newsletter 10: 3-5.
39. Sharma, V., Sharma, A., and Kansal, L. 2010. The effect of oral administration of Allium sativum extracts on lead nitrate induced toxicity in male mice. Food and Chemical Toxicology 48: 928-936.
40. Singh, J. S., Pandey, V. C., and Singh, D. P. 2011. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems and Environment 140: 339-353.
41. Smith, S. E., and Read, D. J. 2008. Mycorrhizal symbioses. 3nd edition. Academic Press. London.
42. Tang, X., and Cronin, D. A. 2007. The effects of brined onion extracts on lipid oxidation and sensory quality in refrigerated cooked Turkey breast rolls during storage. Food Chemistry 100: 712-718.
43. Van der Heijden, M. G. A., Bakker, R., Verwaal, J., Scheublin, T. R., Rutten, M., van Logtestijn, R. S. P., and Staehelin, C. 2006. Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiology Ecology 56: 178-187.
44. Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers, Plant Soil 255: 571-586.
45. Vivas, A., Barea, J. M., Biro, B., and Azcon, R. 2006. Effectiveness of autochthonous bacterium and mycorrhizal fungus of Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. Journal of Applied Microbiology 100: 587-598.
46. Vivas, A., Marulanda, A., Ruiz-Lozano, J. M., Barea, J. M., and Azcon, R. 2003. Influence of Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13: 249-256.
47. Walley, F. L., and Germida, J. J. 1997. Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas species and Glomus clarum NT4. Biology and Fertility of Soils 24: 365-371.
48. Wu, Q. S., and Zou, Y. N. 2010. Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Scientia Horticulturae 125: 289-293.
49. Xavier, L. J. C., and Germida, J. J. 2002. Response of lentil under controlled conditions to coinoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Biology and Fertility of Soils 34: 181-188.
50. Yadegari, M., Asadirahmani, H., Noormohammadi, G., and Ayneband, A. 2010. Plant growth promoting rhzobacteria increase growth, yield and nitrogen fixation in Phaseolis vulgaris. Journal of Plant Nutrition 33: 1733-1743.
51. Yin, B., Wang, Y., Liu, P., Hu, J., and Zhen, W. 2010. Effects of vesicular-arbuscular mycorrhiza on the protective system in strawberry leaves under drought stress. Frontiers of Agriculture in China 4: 165-169.
52. Zhu, C. X., Song, B. F., and Xu, W. H. 2010. Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129-137.
53. Zhu, Y. G., and Miller, R. M. 2003. Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends in Plant Science 8: 407-409.