ارزیابی ویژگی‌های فتوسنتزی ژنوتیپ‌های نخود کابلی (Cicer arietinum L.) در تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فردوسی مشهد

2 lain

چکیده

تنش شوری بر تولید کمی و کیفیت محصول تأثیر منفی داشته و شناسایی جنبه‌های مختلف آن برای مدیریت کاهش خسارت آن در تولید محصولات زراعی از اهمیت بالایی برخوردار است. این آزمایش به‌صورت کرت‌های خردشده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در مزرعه دانشگاه فردوسی مشهد در سال 97-1396 اجرا شد. سطوح شوری 5/0 به عنوان شاهد و  dSm-18 در کرت‌های اصلی و 17 ژنوتیپ نخود کابلی در کرت‌های فرعی در نظر گرفته شدند. نتایج نشان داد که میزان تبخیر و تعرق با اعمال تنش شوری افزایش و تنها در ژنوتیپ‌های MCC65، MCC95 و MCC298 به ترتیب 37، 54 و 63 درصد نسبت به شاهد کاهش یافت. تنش شوری میزان فتوسنتز در ژنوتیپ‌های MCC12، MCC65، MCC72، MCC92، MCC95، MCC679 و MCC776 افزایش یافت. هدایت روزنه‌ای در ژنوتیپ‌های MCC65 و MCC95 با اعمال شوری به ترتیب 28 و 8 درصد افزایش یافت. با افزایش تنش شوری کارایی مصرف آب در ژنوتیپ‌های MCC95، MCC65، MCC92 و MCC298 به ترتیب با 4/3 برابر، 67، 14 و 13 درصد افزایش یافت. میزان زیست‌توده با افزایش تنش شوری در تمامی ژنوتیپ‌ها به‌جز ژنوتیپ MCC139 (2%) روند کاهشی داشت. در تمامی ژنوتیپ‌ها با افزایش سطح تنش شوری میزان عملکرد دانه کاهش‌ یافت و بیشترین عملکرد دانه در شرایط شور مربوط به ژنوتیپ MCC65 با 67/1 کیلوگرم در مترمربع بود. به‌طور‌کلی ژنوتیپ‌های MCC65، MCC139، MCC92، MCC95 در شرایط تنش شوری در بیشتر صفات برتری داشته و حتی در برخی صفات توانسته‌اند در حضور شوری برخلاف روند سایر ژنوتیپ‌ها در جهت تحمل به تنش عمل کنند.

کلیدواژه‌ها


  1. Abdelaziz, H., Halima El, O., Sven-Erik, J., Nicola, L., Atef, H., Ragab, R., Ahmed, J., Redouane, Ch., 2014. Chickpea (Cicer arietinum L.) physiological, chemical and growth responses to irrigation with saline water. Asturalian Journal of Crop Science. 8(5), 646-654.
    Ashraf, M.Y., Akhtar, K., Hussain, F., Iqbal, J., 2006. Screening of different accession of three potential grass species from Cholistan desert for salt tolerance. Pakistan Journal of Botany. 38, 1589-1597.
    Beltagi, M.S., 2008. Exogenous ascorbic acid vitamin C induced anabolic changes for salt tolerance in chickpea (Cicer arietinum L.) plants. African Journal of Plant Science. 2, 118-123.
    Dere, S., Gines, T., Sivaci, R., 1998. Spectrophotometric determination of chlorophyll a, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany. 22, 13-17.
    Flexas, J., Diaz-Espejo, A., Galmes, J., Kaldenhoff, R., Medrano, H., Ribas-Carbo, M., 2007. Rapid variations of mesophyll concentration conductance in response to changes in CO2 around leaves. Plant Cell and Environment. 30, 1284–1298.
    Flowers, T.J., Flowers, S.A., 2005. Why does salinity pose such a different problem for plant breeders? Agricultural Water Management. 78, 15-24.
    Flowers, T.J., Gaur, P.M., Gowda, C.L.L., Krishnamurthy, L., Samineni, S., Siddique, K.H.M., Turner. N.C., Vadez, V., Varshney, R.K., Colmer, T.D., 2010. Salt sensitivity in chickpea. Plant Cell and Environment. 33, 490-509.
    Gandour, G., 2002. Effect of Salinity on Development and Production of Chickpea Genotypes. PhD. thesis. Faculty of Agriculture, Aleppo University, Aleppo, Syria.
    Ashraf, M. and T. McNeilly. 2004. Salinity tolerance in Brassica oil seeds. Crit. Rev. Plant Sci. 23: 157–174. 7. Bandeoğlu, E., F. Eyidoğan, M. Yücel and H. A. Öktem. 2004. Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul. 42: 69–77.
    Grewal, H.S., 2010. Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity. Agricultural Water Management. 97, 148-156.
    Haghighi, M., Pessarakli, M., 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulture. 161, 111-117.
    Hameed, A., Saddiqa A., Nadeem, S.A., Iqbal, N., Atta, B. M., Shah, T.M., 2012. Genotypic variability and mutant identification in Cicer arietinum L. by seed storage protein profiling. Pakistan Journal of Botany. 44, 1303-1310.
    Hetherington, A.M., Woodward, F.I., 2003. The role of stomata in sensing and driving environmental change. Nature. 424, 901–908.
    Hirich, A., Ragab R., Choukr-Allah R., Rami A., 2014. The effect of deficit irrigation with treated wastewater on sweet corn: experimental and modelling study using SALTMED model. Irrigation Science. 32, 205-219.
    Kafi, M,. Bagheri, A., Nabati, J., Zare Mehrjerdi, M., Masomi, A., 2011. Effect of salinity on some physiological variables of 11 chickpea genotypes under hydroponic conditions. Journal of Science and Technology of Greenhouse Culture. 1, 55–70. [In Persian with English Summary].
    Katerji, N., Van Hoorn, J.W., Hamdy, A., Mastrorilli, M., 2000. Salt tolerance classification of crops according to soil salinity and to water stress day index. Agricultural Water Management. 43, 99-109.
    Katerji, N., Van Hoorn, J.W., Hamdy, A., Mastrorilli, M., Oweis, T., 2005. Salt tolerance analysis of chickpea, faba bean and durum wheat varieties: I. Chickpea and faba bean. Agricultural Water Management. 72, 177-194.
    Krishnamurthy, L., Serraj, R., Hash, A.J., Reddy B.V., 2007. Screening sorghum genotypes for salinity tolerant biomass production. Euphytica. 156, 15-24.
    24.Lawson, T., K. Oxborough, J. I. L. Morison and N. R. Baker. 2003. The responses of guard and mesophyll cell photosynthesis to CO2, O2, light and water stress in a range of species are similar. J. Exp. Bot. 54: 1743–1752. 25
    Meloni, D.A., Olivia, M.A., Martinez, C.A., Cambraia, J., 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environment Experimental Botany 49, 69-76.
    Mudgal, V., Madaan., N. Mudgal, A.,Mishra, S., 2009. Changes in growth and metabolic profile of chickpea under salt stress. Journal of Applied Biosciences. 23, 1436-1446.
    Munns, R. Tester, M., 2008. Mechanism of salinity tolerance. Annual Reviews of Plant Biology. 59, 65181.
    Murumkar, C., Chavan, V.P.D., 1986. Influence of salt stress on biochemical processes in chickpea. Cicer arietinum L. Plant and Soil. 96, 439-43.
    Nabati, J., Kafi, M., Khaninejad, S., Masomi, A., Zare Mehrjerdi, M., Keshmiri, E., 2015. Evaluation salinity stress on some photosynthetic characteristics in five Kochia (Kochia scoparia L.) Schra. ecotypes. Journal of Crop Production. 8(2), 49-77. [In Persian with English Summary].
    Qureshi, A.S., Qadir, M., Heydari, N., Turral, H., Javadi, A., 2007. A review of management strategies for salt-proneland and water resources in Iran. Colombo, Sri Lanka: International Water Management Institute. 30p. (IWMI Working Paper 125).
    Rasool, S., Ahmad, A., Siddiqi, T.O. Ahmad, P., 2013. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologia Plantarum. 35, 1039-1050.
    Roy, F., Boye, J.I., Simpson, B.K., 2009. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Research International. 43, 432–442.
    Samineni, S., Siddique, K.H.M., Gaur, P.M., Colmer, T.D., 2011 Salt sensitivity of the vegetative and reproductive stages in chickpea (Cicer arietinum L.): Podding is a particularly sensitive stage. Environmental and Experimental Botany. 71, 260-268.
    Saxena, A.K., Rewari, R.B., 1992. Differential responses of chickpea (Cicer arietinum L) rhizobium combinations to saline soil-conditions. Biology and Fertility of Soils. 13, 31–34.
    Serraj, R., Krishnamurthy, L., Upadhyaya, H.D., 2004. Screening chickpea mini-core germplasm for tolerance to soil salinity. International Chickpea and Pigeonpea Newsletter. 11, 29–32.
    Shimada, T., Sugano, S. S., Hara-Nishimura, I. 2011. Positive and negative peptide signals control stomatal density. Cellular and Molecular Life Sciences. 68: 2081–2088.
    Singla, R., Garg, N., 2005. Influence of salinity on growth and yield attributes in chickpea cultivars. Turkish Journal of Agriculture and Forestry. 29, 231-235.
    Sultan, N.,Ikeda, T.,Itoh,R., 1999. Effect NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Exprimental Botany. 42, 211-220
    Varshney, R.K., Hiremath, P.J., Lekha, P., Kashiwagi, J., Balaji, J., Deokar, A.A., Vadez, V., Xiao, Y., Srinivasan, R., Gaur, P.M., 2009. A comprehensive resource of drought-and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics. 10, 523–540.
    White, P.J., Broadley, M.R., 2001. Chloride in soils and its uptake and movement within the plant: A review. Annals of Botany. 88, 967–988.
    Zaccardelli, M., Sonnante, G., Lupo, F., Piergiovanni, A.R., Leghetti, G., Sparvoli, F., Lioi, L., 2013. Characterization of Italian chickpea (Cicer arietinum L.) germplasm by multidisciplinary approach. Genetics Resources and Crop Evolution. 60, 865-877.

مقالات آماده انتشار، پذیرفته شده
انتشار آنلاین از تاریخ 01 آذر 1399
  • تاریخ دریافت: 29 اردیبهشت 1398
  • تاریخ بازنگری: 05 مرداد 1398
  • تاریخ پذیرش: 07 مهر 1398